Truncated 6-simplex


6-simplex

Truncated 6-simplex

Bitruncated 6-simplex

Tritruncated 6-simplex
Orthogonal projections in A7 Coxeter plane

In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.

There are unique 3 degrees of truncation. Vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are located on the triangular faces of the 6-simplex. Vertices of the tritruncated 6-simplex are located inside the tetrahedral cells of the 6-simplex.

Contents

Truncated 6-simplex

Truncated 6-simplex
Type uniform polypeton
Schläfli symbol t0,1{3,3,3,3,3}
Coxeter-Dynkin diagram
5-faces 14:
7 {3,3,3,3}
7 t{3,3,3,3}
4-faces 63:
42 {3,3,3}
21 t{3,3,3}
Cells 140:
105 {3,3}
35 t{3,3}
Faces 175:
140 {3}
35 {6}
Edges 126
Vertices 42
Vertex figure Elongated 5-cell pyramid
Coxeter group A6, [35], order 5040
Dual ?
Properties convex

Alternate names

Coordinates

The vertices of the truncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,2). This construction is based on facets of the truncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Bitruncated 6-simplex

Bitruncated 6-simplex
Type uniform polypeton
Schläfli symbol t2,3{3,3,3,3,3}
Coxeter-Dynkin diagram
5-faces 14
4-faces 84
Cells 245
Faces 385
Edges 315
Vertices 105
Vertex figure
Coxeter group A6, [35], order 5040
Properties convex

Alternate names

Coordinates

The vertices of the bitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Tritruncated 6-simplex

Tritruncated 6-simplex
Type uniform polypeton
Schläfli symbol t2,3{3,3,3,3,3}
Coxeter-Dynkin diagram
5-faces 14 t1,2{3,3,3,3}
4-faces 84
Cells 280
Faces 490
Edges 420
Vertices 140
Vertex figure
Coxeter group A6, [[35]], order 10080
Properties convex, isotopic

The tritruncated 6-simplex is a isotopic uniform polytope, with 14 identical bitruncated 5-simplex facets.

Alternate names

Coordinates

The vertices of the tritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,2,2). This construction is based on facets of the bitruncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Symmetry [[7]](*)=[14] [6] [[5]](*)=[10]
Ak Coxeter plane A3 A2
Graph
Symmetry [4] [[3]](*)=[6]
Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxter-Dynkin diagram.

Related uniform 6-polytopes

The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.


t0

t1

t2

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t0,5

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t0,1,5

t0,2,5

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t0,1,4,5

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,2,3,4,5

Notes

  1. ^ Klitzing, (o3x3o3o3o3o - til)
  2. ^ Klitzing, (o3x3x3o3o3o - batal)
  3. ^ Klitzing, (o3o3x3x3o3o - fe)

References

External links